
大数据的应用如今已经十分普遍了,作为一名大数据程序员,对于大数据应用要掌握的知识还是比较多的,下面重庆达内小编为大家分享3个大数据平台应用知识,希望能帮助学习大数据的你.
一、大数据分析中的实时推荐是如何实现的?
实时推荐需要使用实时处理框架结合推荐算法,从而做到对数据的实时处理和推荐。实时处理框架有Storm、Flink、SparkStreaming,组件可以对接Kafka,获取实时流数据,在实时框架内部实现对数据的处理过程。
1、实时推荐需要借助实时计算框架例如Spark或是Strom技术,
2、数据采集采用Flume+Kafka作为数据缓存和分发作用
3、同时还需要有非常适合的实时推荐算法,例如基于用户画像的实时推荐,或是基于用户行为的实施推荐、或是对商品相识度的实施推荐等不同的算法
二、数据治理有何高效的处理方法或工具?
数据治理没有具体的工具和方法,这是一项浩大的工程,可能牵扯到每个部门,既有技术人员参与,又要有业务人员参与,关键时刻还要有领导进行决策。每个公司的数据情况不同,处理方法也不尽相同,基本的方法是有的,暨通过对数据的梳理(元数据、主数据),发现数据质量问题,再通过质量标准或组织协调的方式,对数据进行标准化处理的。
数据治理是一项人力和辛苦活,没有捷径和什么有效的工具,而且在一个大数据项目中,数据治理是非常重要的一个环节,因为只有数据质量满足前端应用需求,才有可能挖掘和分析出准确的结果。
具体数据处理方法还需要看实际业务情况,例如数据库、数据类型、数据规模等
数据治理的过程是一个对业务系统数据梳理的过程,过程中发现的问题会反馈给业务部门,同时还要制定统一的质量和稽核标准,就好比给每个业务系统数据生成线上增加一个质量监管员。
三、请问在大数据平台搭建过后,大数据平台的运维监控主要关注哪些?
大数据平台的运维监控主要包括硬件和软件层面,具体如下:
1、主机、网络、硬盘、内存、CPU等资源。
在拥有几十台以上的集群环境中,大量的数据计算对硬件尤其是硬盘的损耗是较大的,在大量计算中,网络也往往会成为一个瓶颈,这些都需要时刻关注。
2、平台层面
主要监控平台各个组件的状态、负载情况,有异常及时报警。
3、用户层面
大数据平台建设是为了服务公司内部广大用户的,所以资源既是共享的,又需要是隔离的,所以需要对用户对平台资源的使用情况做好监控,及时发现异常使用情况,防止对其他用户产生不良影响,影响正常业务开展。
大数据平台搭建后,运维监控的主要内容包括
1、分布式架构的底层虚拟机的运行情况(CPU、内存、网络、硬盘等)
2、各个组件(HDFS、MR、SPark、Hive、Hbase、IMpla、FLume、Spooq等)的运行状态和告警信息
更多有关大数据学习资讯的信息请关注我们,在线老师会免费提供试听学习资料,在线预约可享受课程优惠,点击进入【重庆达内教育】网站详细了解。